Vector Autoregresive Moving Average Identification for Macroeconomic Modeling: Algorithms and Theory
نویسنده
چکیده
This paper develops a new methodology for identifying the structure of VARMA time series models. The analysis proceeds by examining the echelon canonical form and presents a fully automatic data driven approach to model specification using a new technique to determine the Kronecker invariants. A novel feature of the inferential procedures developed here is that they work in terms of a canonical scalar ARMAX representation in which the exogenous regressors are given by predetermined contemporaneous and lagged values of other variables in the VARMA system. This feature facilitates the construction of algorithms which, from the perspective of macroeconomic modeling, are efficacious in that they do not use AR approximations at any stage. Algorithms that are applicable to both asymptotically stationary and unit-root, partially nonstationary (cointegrated) time series models are presented. A sequence of lemmas and theorems show that the algorithms are based on calculations that yield strongly consistent estimates.
منابع مشابه
A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models∗
Recently, there has been a renewed interest in modeling economic time series by vector autoregressive moving-average models. However, this class of models has been unpopular in practice because of estimation problems and the complexity of the identification stage. These disadvantages could have led to the dominant use of vector autoregressive models in macroeconomic research. In this paper, sev...
متن کاملIdentification of Autoregressive Moving-Average Parameters of Time Series
,4bstme—A pmeedurefor sequentiaffy eatirnating the parameters and orders of mixed autoregmsive moving-average signaf modefs from tirneserfes data is presented. Iderrtfffftion ia performed by first fderstffying a purely asrtoregmwive aignaf model. Tire parametem and orders of tbe mixed autoregmsaive moving-average proeeaa are then gfven from tbe solutton of sfmple sdgebraic equations involving t...
متن کاملIterative and recursive least squares estimation algorithms for moving average systems
An iterative least squares algorithm and a recursive least squares algorithms are developed for estimating the parameters of moving average systems. The key is use the least squares principle and to replace the unmeasurable noise terms in the information vector. The steps and flowcharts of computing the parameter estimates are given. The simulation results validate that the proposed algorithms ...
متن کاملAssessment of financial stability in the banking sector
The aims of the present study are developing a financial stability index (FSI) using banking indices to measure financial stability in Iran, and examining the relationship between financial stability and macroeconomic variables for policymaking. To these ends, we have employed principal-component analysis, out of sample forecasting, Autoregressive Integrated Moving Average (ARIMA) method, and V...
متن کاملCompositional Time Series Past and Present
This survey reviews diverse academic production on compositional dynamic series analysis. Although time dimension of compositional series has been little investigated, this kind of data structure is widely available and utilized in social sciences research. This way, a review of the state-of-the-art on this topic is required for scientist to understand the available options. The review comprehe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009